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For a function 1 of bounded variation on compact intervals, satisfying certain
growth conditions, we estimate the rate of convergence of its expansion in a series
of polynomials orthogonal on the whole real axis with respect to a weight function,
now known as a Freud weight. The case where 1 has higher order derivatives of
bounded variation is also studied. The principal techniques include the finite-infinite
range inequalities due to the author and Saff, and Freud's theorems on one-sided
weighted V-approximation. Our theorem holds, in particular, when the weight
function is exp( _xm

), m a positive even integer. © 1988 Academic Press. Inc.

1. INTRODUCTION

In 1979, R. Bojanic [1] obtained an estimate on the rate at which the
trigonometric Fourier series of a 2n-periodic function of bounded variation
converges. His theorem can be stated as follows.

THEOREM 1.1 ([ 1]). Let f be a 2n-periodic function having bounded
variation on [ - n, n] and, for n ~ 1, let Sn(f) denote the nth partial sum of
the Fourier series off Then, for x E [ -n, n] and n ~ 1,

ISn(f,X)-~(f(X+)+f(X-))I~~k~1 v([o,~J,g:), (1.1)

where

*(t) '= {f(X + t) + f(x - t),
gx . f(x+)+ f(x-),

t#O

t=O
(1.2)

and V([a, b]), gn denotes the total variation of g: on [a, b].

* The author is grateful to the California State University, Los Angeles, for a leave of
absence during which this work was done and to the Bowling Green State University,
Bowling Green, Ohio, for their support during the leave.
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This theorem seems to have inspired a great deal of research in which
analogous results have been obtained (e.g., [2,3,4,6, 7, 9, 10, 11, 12,
16, 17]). All of these papers deal with processes defined for functions of
bounded variation on compact intervals. Various technical difficulties
prevent a straightforward extension of these results to the case of functions
supported on the whole real line.

In 1974, G. Freud [13] proved a theorem of Dirichlet-Jordan type for
expansions in polynomials orthogonal on the whole real line with respect
to a weight function satisfying some mild conditions. We postpone the
detailed statement of his results to Section 2 (cf. Theorem 2.1) but make a
few comments here. The usual integration.by-parts argument used for
obtaining such a theorem for Fourier series did not work because of the
lack of detailed information about the orthogonal polynomials. Freud
used, instead, a Tauberian argument, involving the comparison of the
partial sums of the expansion with their shifted artithmetic averages. The
novelty of his ideas in [13] together with the connections between his
result and the weighted analogues of Jackson-Favard-type estimates, in
our opinion, make [13] an important landmark in the theory of weighted
polynomial approximation. Nevertheless, in order for these ideas to work,
it is very important that the function being expanded be continuous on the
whole real line.

Recent progress in the theory of weighted approximation, particularly
[19], has made it possible to use the old integration-by-parts argument
again to obtain the rate of convergence of the orthogonal polynomial
expansions on the whole real line for functions of bounded variation which
are not necessarily continuous. In [5], we studied the case of the expan
sions in Hermite polynomials, using heavily the special properties of
Hermite polynomials. In this paper, we continue these investigations for
a more general class of weight functions and also in the case when the
function being expanded has higher derivatives. The core of the argument
is similar to that in [17]; other key ingredients being the finite-infinite
range inequalities of [19] and the one-sided approximation theorem of
Freud [14].

In the next section, we state Freud's theorem in [13] as well as our
theorem. The proofs are given in Section 3.

I thank Professor Bojanic for his kind encouragement and generous help
in this work.
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2. MAIN RESULTS

We consider weight functions of the form wQ(x) :=exp( -Q(x)) which
satisfy the following conditions:

(WI) Q is an even, convex, positive function on IR and is differen-
tiable and increasing on (0, (0).

(W2) Q'(x) -+ 00 as x -+ 00.

(W3) 1+ C j < Q'(2x)/Q'(x) < 1+ cz, (x> C3)'

(W4) For each sufficiently large n, let qn be the smallest number for
which

Then there exists a constant B> 1 such that

Here and elsewhere in the paper we adopt the following convention
concerning the various constants: we shall denote the constants depending
on Q alone by c, Cj, C2' etc. However, the same symbol may denote
different constants in different formulas. Constants denoted by capital
letters, however, retain their value when referred to in different formulas.

Let IIn be the class of all polynomials of degree at most n,
{pk(x) := Yk x k + ... E IIk> Yk > O} the system of orthogonal polynomials
with respect to wb:

(2.1 )

(2.2a)

n-j

sn(w~, f, x) := sn(f, x):= L Ok Pk(X)'
k=O

Freud's theorem can now be formulated as follows.

(2.2b)

THEOREM 2.1 ([13]). Let f be a continuous function on IR which is of
bounded variation over every compact interval and

(2.3)
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lim IlwQ(x)[f(x)-snU; x)]ll oo =0.
n~ 00
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(2.4 )

Freud's theorem is, in fact, true under much weaker conditions on the
weight function.

Before we state our result, we need to introduce additional notation. If <ft
is a function having bounded variation on compact intervals, and x E IR, we
set

'-1 <ft(t) - <ft(x - ),
gA<ft, t).- 0,

<ft(t)-<ft(x+ ),

If [a, b] c IR, we set

-oo<t<x

t=x
x < t < 00.

(2.5)

VQ([a, b], <ft):=rwQ(t) 1#(t)l·
a

Finally, denoting the quantity max(yr, 0) by Y':r, we put

(2.6)

r>O
r=O

(2.7)

and

Our main theorem can now be stated as follows.

(2.8)

THEOREM 2.2. Let r ~ 0 be an integer, f an r-times iterated integral of
a function <ft (= f if r =0) having bounded variation on compact intervals.
Suppose that

foo wQ(t) It!' Id<ft(t)1 < 00.
-00

(2.9)

Assume that the system of orthogonal polynomials satisfies the condition

(PB)
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Then, for x E IR and n = 1, 2, ...,

Isn(w~, f, x) -~ (f(x + )+ f(x - )) - [QJ(x + )~ QJ(x - )] (In, AX)I

~ cj(x) {n:: j~j VQ([ x- ~n, x+ ~1gAQJ,'))

+I:. It!' wQ(t) IdQJ(t)I}. (2.10)

In order to see why the first term on the right hand side of (2.10) tends
to 0 as n -+ 00, observe that qn/n -+ 0 as n -+ 00. Hence, denoting gAQJ,')
by g,

~ [1:+ j VQ ([ X - ~, x +~Jg) ~ c.~ fWQ Idgl

while, if k ~~ then

Thus,

(2.11 )

(2.12)

Since g is continuous at x, so is its variation function. An integration by
parts in the formulas for VQ then shows that the right hand side of (2.12)
tends to zero as n -+ 00. Estimates (2.11) and (2.12) then show that the first
term on the right hand side of (2.10) tends to 0 as n -+ 00.

The Condition (PH) is perhaps unduly stringent. Currently, it is known
to be true only in the case when Q(x) = xm

, m being an even, positive
integer [8]. In [20], it is conjectured that such an estimate is true also
when Q(x) = Ixl"', ex> 1.

When Q(x) = x 2
, then the orthogonal polynomials are precisely the

Hermite polynomials. In this case, we found an asymptotic expression
for (In,r(x) in [5]. In the general case, it is easy to check that
(In,r(x)=@(qn/n)'; but a better estimate would be desirable.
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The proof of our theorem depends upon the relationship between various
constants. For the convenience of the reader, we give a list of a few
constants which will be used often along with the location where they first
occur.

Symbol Location

Condition (PB) in Theorem 2.2
Formula (3.42)
Condition (W4) on the weight function
Lemma 3.1(b), Formula (3.6)
Lemma 3.1 (c)
Lemma 3.1(c)

Formula (3.17)

Lemma 3.1(d)
Formula (3.17)
Formula (3.44)

3. PROOF

Before we proceed to prove Theorem 2.2, we summarize some known
estimates as well as certain computational aspects of our proof in the
following lemma.

LEMMA 3.1. (a) Let

n-I
Kn(x, t):= L Pk(X) Pk(t).

k=O

Then

K ( ) = Yn-I Pn(x) Pn-I(t) - Pn-I(X) Pn(t)
n x, t .

Yn x- t

For Kn(x, x), we have the following:

(3.1 )

(3.2)

xelJt (3.3)

(b) Let m ~ 1 be an integer, am be defined by the formula

m =~ fl amxQ'(amx) dx. (3.4)
11: 0 Jt=?
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f IP(t) wQ(t)1 dt ~ 1
It I~2am

(3.5)

f IP( t) W Q(tWdt ~ c exp( - B, m).
It! ~2am

(3.6)

(c) There exist posltrve constants B2, B3 with B 2< 1 such that
whenever P Ell [B2 n] and

J IP(t) wQ(t)1 dt ~ 1
It I ",; Aqn

we have

f IP(t)wQ(tWdt~c·exp(-B3n),
It I ~Aqn

where A is the constant appearing in (PB).

(d) There exists a constant D such that for Iy I~ Dqn'

(3.7)

(3.8)

( B3n) (3.9)exp --8- ~ c· wQ(Y).

(e) For any D, > 0, if Z ~ D, qn then

f" v'wQ(v) dv ~ c· qn z'wQ(z). (3.10)
z n

(f) For any D, >0, if Ixl ~ tD,qn and °~ u~ !D,qn, we have

wQ(x + D, qn) ~ c, exp( -C2n) wQ(x + u). (3.11)

(g) For x E IR, t> 0, and integers n ~ r ~ 0, let

1 rG(t) := -, (t - u)' dgA~, x + u) (3.12)
r. t 0

1 !'"An(t) :=, (t- u)' Pn(x + u) w~(x+ u) duo (3.13 )
r. t
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Then,for integer k, 0 ~ k ~ r, and Ix + tl ~ Dqn
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(3.14)

(3.15 )

Proof of Lemma 3.1. Part (a) was proved in [15]. Part (b) is a special
case of Theorem 2.7(b) of [19] (cf. Example 3, pp.76--78 in [18]). Since
Q'(x) is increasing, (3.4) implies that

(3.16)

In view of Assumption (W4) on the weight function, we may find Bz,
0< Bz < 1, such that with m = [Bzn],

Part (c) now follows with B3 := BzBd2. In view of Assumption (W3), we
see that for any Dz > 0

(3.17)

for some constants K and y independent of Dz or n. Hence, for
D := (B3/8K)1/Y,

(3.17a)

So, if Iyl ~Dqn

f
Dq•

Q(y)=Q(lyl)~Q(Dqn)=Q(O)+ 0 Q'(t)dt

~ DqnQ'(Dqn) + Q(O) ~ Q(O) + B 3 n/8. (3.18)

This yields (3.9).
In order to prove part (e), observe that for v~ c,

Also, ifv~z~Dlqn, then Q'(v)~c·n/qn' So, for v~z,

(3.20)
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Integrating both sides of (3.20) with respect to v between z and 00, we get
(3.10). To prove part (f), we first prove that

(3.21 )

Indeed, this is obvious when x + u~ O. If x + u < 0 then

(3.22)

This gives (3.21) in this case also. Now,

IQ(x+D1qn) - Q (x + D~qn)1 ~ J:lq:2 Q'(x + t) dt

~c·qnQ/(DlqJ4)~c·n. (3.23)

The Estimate (3.11) follows from (3.23) and (3.22).
The fact that (3.12) implies (3.14) is a simple application of Leibnitz's

formula. Further

A~k)(t)= fXJ (x+t-V)'+-k Pn(v)wb(v)dv. (3.24)
- 00

Let m:= [B 2 n]. Then, in view of a theorem of G. Freud on one-sided
weighted L I-approximation, there exists a polynomial PEnm such that

(3.25)

(cf. [14], Lemmas 2.1, 5.1, and the Estimate (5.15). Note, however, the
difference in notation.) Since Pn is orthogonal to P, we see that

IA~k)(t)1 = If~00 [(x + t - VYt-- k - P(v)] Pn(v) wb(v) dvI~ J I +J2 , (3.26)

where

J I := f I(x + t- V)'+-k - P(v)1 wQ(v) IPn(v) wQ(v)1 dv (3.27a)
Ivl';; Aqn

J 2 := f I(x + t - v):--k - P(v)1 wQ(v) ·IPn(v) wQ(v)! dv. (3.27b)
Ivl:;' Aqn
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In view of (3.25) and Assumption (PB) on orthogonal polynomials, we
have

J1~ C • q;; 1/2(qn/ny-k + 1 WQ(X + t). (3.28)

Also, if Ix+tl~Dqn, P1(v):=(x+t-vy-k-P(v)ellm satisfies, in view
of (3.25),

f IP1(v)1 wQ(v)dx::;;C·q~-k. (3.29)
Ivl<; Aqn

So, part (c) of this Lemma implies that

f IP l(v)1 wQ(v) dv ~ c· exp (--2
1

B 3 n), (3.30a)
Ivl;" Aqn

Similarly,

J IP(v)1 WQ(v) dv::;; c·exp (--2
1

B3 n). (3.30b)
Ivl;" Aqn

Thus

The part (a) of this Lemma implies that IPn(v)1 wQ(v)~c.(n/qn)I/2 for
all v E IR. So, (3.30c) yields

(3.31 )

Since Ix + tI~ Dqn' part (d) of this lemma now gives

(3.32)

Substituting from (3.32) and (3.28) into (3.26), we get (3.15). I
In the proof of (3.15), we did not really use the fact that Pn is a

polynomial; merely that it is orthogonal to IIn _ I' Thus, the same proof
gives us the following analogue of H. Bohr-type inequality. We shall not
need it in this paper, but record it here for a possible future reference.

PROPOSITION 3.2. Let WQFE L OO(IR), n ~ c be an integer, 0 < f3 < 1,

ess sup{lwQ(t)F(t)l: ItI ~f3qn} =: M1,n

ess sup{ IwQ(t)F(t)\: Itl ~ f3qn} =: M 2,n'

(3.33a)

(3.33b)



160 H. N. MHASKAR

Suppose that for every PE lIn'

foo P(t)F(t) wb(t) dt = O.
- 00

Let, for an integer r ~ 0,

1 fY
~(y):=, (y-uYF(u)w~(u)du.

r. - 00

(3.34 )

(3.35)

Then, for Iyl :::0; c(P, r) qn'

IWQ1(Y)~(Y)1 :::O;C1{(~nr+l M1.n+exp(-czn) Mz,n}, (3.36)

where C1 and Cz are positive constants depending only upon Q, P, and r.

For r = 0, a cruder form of this proposition was proved by G. Freud in
[15]. From this proposition (in its cruder form), Freud then obtained the
direct theorems of weighted polynomial approximation. We shall not
pursue this line of thought here.

We now return to the proof of Theorem 2.2. We observe that when r = 0
and hencef=iP, we have (cf. (2.5), (2.7», for t-#x,

f(x+)+ f(x-)
f(t)= 2 + [f(x+)-f(x-)]Fo(t,x)+gAt). (3.37)

When r > 0 then [f(x + )+ f(x - )]/2 = f(x) and the fact that f is an
r-times iterated integral of iP can be reformulated to state that for t -# x,

1 fl
f(t) = P(x, t) + (r -1 )! x (t - uy-l iP(u) du, (3.38)

where P(x,') E IIr and P(x, x) = f(x). A simple computation now gives for
t-#x,

f(t) = P(x, t) + [iP(x + )~ iP(x - )] Fr(t, x) + F(x, t), (3.39)
r.

where

1 fl
F(x, t)= (r-l)! x (t-uy-l gAiP, u)du

1 fl=, (t-uYdgAiP,u).
r. x

(3.40)
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If r = 0, we let F(x, t) := gAr/J, t). Since sn(w~, P(x,'), x) = P(x, x) = f(x),
we see from (3.37) and (3.39) that

(
2 f, ) f(x+)+f(x-) [r/J(x+)-r/J(x-)] ()

Sn W Q ' ,x - 2 - r! (Jn.r X

(3.41)

Thus, the proof of Theorem 2.2 consists of an estimation of
sn(w~, F(x,'), x). We now fix x, and for simplicity of notation, write F(t)
instead of F(x, t) and g(t) instead of gAr/J, t). Set

A* :=min(A, foD), (3.42)

where A is the constant appearing in Condition (PB) on orthogonal
polynomials and D is the constant given by Lemma 3.1(d). Assume that n
is so large that

Further, let

L:=!D.

Next, we observe that (cf. [21], p. 39),

Sn(W~, F, x) = fIC' Kn(x, x + t) F(x + t) w~(x + t) dt
-00

where, with H(t) := Kn(x, x + t) F(x + t) w~(x + t),

II := i H(t) dt
ItI ~ q,Jn

(3.43 )

(3.44 )

(3.45)

(3.46a)

f
-Lq•

12 := H(t) dt,
-00

f
-q,Jn

14 := H(t) dt,
-Lq.

13 := fOO H(t) dt
Lq.

f
Lq•

Is := H(t) dt.
q,Jn

(3.46b)

(3.46c)

We shall estimate 11 ,13 , Is, the estimation of 12 and 14 being similar to that
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of 13 and 15 , respectively. The estimation of II is the simplest. From
Lemma 3.1(a), we see that

Kn(x, x + t):::; JKAx, x)· JKn(x + t, x + t)

(3.47)

Hence,

lIt! :::;C'~WQI(x)f IF(x+t)1 wQ(x+t)dt. (3.48)
qn Itl,,;;q.,jn

But, from (3.40), if It I :::; qn/n, then

IF(x+ t)1 = I~r(t- u)' dg(x+ U)I
r. 0

:::; C (~nr["::/n Idg(x + u)l·

Also, if It-ul :::;2qn/n, (3.43) shows that

(3.49)

IQ(x + t) - Q(x + u)1 :::; C • qn Q'(2A *qn):::; c. (3.50)
n

Hence,

Hence, (3.48) yields that

IIII:::;C'WQI(X).(~nrVQ([x-~n,x+~lg). (3.51)

Next, we estimate 13 , In view of (3.47),

(3.52)
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fCO fLqn/2
13,1:= WQ(X+t) It-ul r Idg(x+u)1 dt

Lq. 0

f
CO fLq.

13,2:= WQ(X+t) It-ulrldg(x+u)ldt
Lq. Lq./2

163

(3.53a)

(3.53b)

(3.53c)

If we interchange the order of integration in 13,1 and 13,2 and then put
v := x + t, we get

f

Lq
n/2 fCO

13,1 = wQ(v) Iv-x-ul rdvldg(x+u)1
o x + Lq.

(3.54a)

(3.54b)

We estimate the inner integral in both of these integrals first. In both 13,1

and 13,2 we have Ixl:o::;;. A *qn:o::;;. (DI90) qn = (LI45) qn:o::;;. (LI8) qn' u:o::;;. Lqn'
and v~x+Lqn, So,

(3,55)

Moreover, x+Lqn~Lqn-lxl~~Lqn' Thus, we may use Lemma3.l(e)
with ~L in place of D 1 to get

:o::;;.c·fCO IvlrwQ(v)dv
x+Lqn

(3.56)
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Substituting this in (3.54), we have

(3.57a)

(3.57b)

(3.58)

Our next objective is to bring the wQ term inside the integral. In 13•1 ,

u~!Lqn and Ixi ~*Lqn' So, we apply Lemma 3.1 (f) to get

wQ(x +Lqn) ~ C1 exp( -C2n) wQ(x +u).

Since Ix + Lqnl ~ cqn' we now obtain that

f
Lqnl2

1/ 3,11 ~c·exp(-c2n) 0 wQ(x+u) Idg(x+u)l·

In 13,2 x+u~u-lxl~(!L-(L/8))qn>0.So, wQ(x+Lqn)~wQ(X+u).

Also,

Ix + Lqnl' ~ cq~ ~ c(x + u)'.

Hence, (3.57b) gives

q fLq
•1/3.21~c,...!! Ix+ul'wQ(x+u)ldg(x+u)1

n Lq./2

~ c· qn fXl It!' wQ(t) Idg(t)l.
n x+(L/2)q.

(3.59)

Next, we estimate 133 , Interchanging the order of integration in (3.53c),

13•3 =f') r" (v-x-u)'wQ(v)dvldg(x+u)l. (3.60)
Lqn x+ U

Since x + u~ Lqn -Ixl ~ 'iLqn, we may use Lemma 3.1(e) again with iL in
place of D 1 to get

f
OO q

(v - x - u)' W Q(v) dv ~ c . ...!! (x + u)' W Q(x + u).
x+u n

Substituting this into (3.60), we get

113,31 ~c· qnfoo Ix+ul'wQ(x+u) Idg(x+u)1
n Lq.

(3.61 )
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In view of (3.58), (3.59), (3.61), and (3.52), we have

1131~ C' WQ1(X) {e-CInYQ([ x, x +~ qn ], g)

+ fOO trwQ(t) Idg(t)I}. (3.62)
x + (L/2) qn

Next, we turn to the estimation of Is. This estimation is done using an
integration by parts argument similar to the one in [17]. The details are,
however, more complicated partly because we need an estimate involving
YQ instead of the ordinary total variation. In view of (3.2), we may write

Is = Yn-I {Pn_I(X) Is 1- Pn(x) Is 2}'
Yn ' ,

where, with the notation (3.12) and (3.13),

f
Lqn

15,1 := Pn(X + t)G(t) wMx + t) dt
qnln

f
Lqn

15,2 := Pn_I(X +t)G(t) w~(x+ t) dt.
qn/n

Now, using the inequality [15]

Yn-I/Yn ~ cqn

and Condition (PB), for Ixi ~A*qn'

(3.63)

(3.64a)

(3.64b)

(3.65)

(3.66)

We shall estimate 15,1; the estimate for 15,2 is similar. With the notation of
(3.13),

(3.67)

Integrating by parts several times,

15,1= kto (_I)k[ G(k)(Lqn)Al:-k)(Lqn)-G(k)(~n)Al:-k)(~n)J

+rqn

An(t) dG(r)(t). (3.68)
qnln

640/55/2-4
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To estimate the integrated terms, we recall that when qJn ~ t ~ Lqn'
Ix + tl ~ kLqn + Lqn ~ Dqn' So, Lemma 3.1(g) can be applied to get

IG(k)(Lqn) A~-k)(Lqn)1

(3.69)

and so,

The estimation of the right hand side of (3.69) is similar to that of /3,1 and
/3,2 of (3.53). Thus, if (Lj2) qn ~ U ~ Lqn then

L
x+Lqn~x+ u~x+2 qn>O.

~c j'Xl Ix+ulrwQ(x+u)ldg(x+u)j
Lq.,j2

(3.72)

If 0 ~ u~ (Lj2) qn' then we may apply Lemma 3.1 (f) to get
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So,

Substituting from (3.72) and (3.73) in (3.69), we get

IG(k)(Lqn) Al;-k)(Lqn)1 ~ cq;; 1/2 {e- C2n vQ ([ x, x+~nl g)

167

(3.73 )

+ fOO Ill' WQ(t) Idg(t)I}. (3.74)
x + (LI2) qn

Next, we have to estimate the integral expression in (3.68). Using (3.15)
with k =0, we see that

An application of Leibnitz's formula now yields that

f
Lqn

W (x + t) il

~c Q 2 Idg(x+u)1 dt
qnln t 0

f
Lqn WQ(x + t) Idg(x + t)1+c .

qn/n t
(3.76)

The last integral above can be estimated as usual. We integrate by parts
and get

f
Lqn fl+ t- 2 wQ(x+u) Idg(x+u)1 dt.

qn/n 0
(3.77)
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The first integral on the right hand side of (3.76) is easy to estimate when
x ~ O. In this case, since W Q is a decreasing function on (0, 00),
wQ(x + t) ~ wQ(x + u) for all u with 0 ~ u~ t. Then

(3.78)

When x < 0, the estimate is somewhat more difficult. If 0 ~ u~ t ~ 21xI then

IQ(x + t) - Q(x +u)1 ~ cxQ'(x).

So,

fZ'X' W Q(x + t) fl
---=-.:.....z--'- Idg(x + u) I dt

qn/n t 0

f
Zlxl 1 fl

~Cl exp(czxQ'(x» 2" wQ(x+u) Idg(x+u)1 dt.
qnin t 0

If t ~ 21xl, but 0 ~ u ~ lxi, then

O~ Ix+ul = -x-u~ -X= Ixl ~21xl +x~x+ t.

f
Lqn

W Q(x + t) f'X'
---=-.:.....2- Idg(x +u)1 dt

21xI t 0

(3.79)

(3.80)

Finally, if t ~ 21xl and t ~ u~ lxi, then 0 ~ x + u~ x + t and hence
wQ(x + t) ~ wQ(x + u). So,

fLqnwQ(xz+t)fl Idg(x+u)1 dt
Zlxl t Ixl

f
Lqn II~ t- Z wQ(x + u) Idg(x + u)1 dt.
Zlxl Ixl

(3.81)
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Adding (3.79), (3.80), and (3.81), we get

r
qn

wQ(x/ t) f Idg(x + u)1 dt
qnln t 0
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~c·exp(clxQ'(x)) r
qn

t- 2f wQ(x+u) Idg(x+u)1 dt (3.82)
qnln 0

when x < O. In view of (3.78), we see that (3.82) holds for all x E lit We now
substitute from (3.82) and (3.77) into (3.76) and then use the resulting
estimate in (3.75) to get

I
rqn An(t) dG(r)(t)!

qnln

~ c . q;;1/2 (~nrexp(c1xQ'(x))

.HVQ([x, x+Lqn], g) + VQ([ x, x+ ~nl g)

qn fLqn VQ([x, x+ t], g) d}+ 2 t .
n qnln t

A routine computation now yields that

I
rqn An(t) dG(r)(t)!

qnln

(3.83)

~ c· exp(c1xQ'(x)) q;;1/2 (~nr .~ k~1 VQ([ x, x + inl g). (3.84)

In view of (3.71), (3.74), (3.75), (3.84), and (3.68),

1/5.d ~ c . exp(c1 xQ'(x)) q;;1/2 (~r.~ k~1 VQ([ x, x+~l g)

+cq;;1/2 f'" ItlrwQ(t) Idg(t)I.
x + Lqnl2

(3.85)

We estimate /5.2 in a similar fashion and use this estimate along with (3.85)
in (3.66) to get

1/51 ~ C(X) {(~nr~ k~1 VQ ([ x, x + in1g)
+ f'" It!' wQ(t) Idg(t)I}. (3.86)

(LI4) qn
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Here we have also used the fact that x + (Lj2) qn ~ ((Lj2) - A*) qn ~
(Lj4) qn- The estimations for 12 and 14 are done in the same way as for 13

and Is, respectively. When we use these estimations along with (3.87),
(3.62), and (3.51) in (3.45), we see that

ISn(w~, F, x)1 ~c(x) {(~nr ~ k~1 VQ ([x- i, x+ i Jg)

+f It!' wQ{t) Idg(t)I}. (3.87)
III ~ (L/4) qn

In view of (3.41), this completes the proof of Theorem 2.2.

REFERENCES

1. R. BOJANIC, An estimate for the rate of convergence for Fourier series of functions of
bounded variation, Publ. [nst. Math. (Beograd) (N.S.) 26, No. 40 (1979), 57--60.

2. R. BOJANIC AND Z. DIVIS, An estimate for the rate of convergence of the eigenfunction
expansions of functions of bounded variation, Appl. Anal., to appear.

3. R. BOJANIC AND S. M. MAZHAR, An estimate of the rate of convergence of the
N6rlund-Voronoi means of the Fourier series of functions of bounded variation,
in "Approximation Theory III" (E. W. Cheney, Ed.), pp.243-248, Academic Press,
New York, 1980.

4. R. BOJANIC AND S. M. MAZHAR, An estimate of the rate of convergence of Cesaro means
of Fourier series of functions of bounded variation, to appear.

5. R. BOJANIC AND H. N. MHASKAR, A rate of convergence theorem for expansions in
Hermite polynomials, in preparation.

6. R. BOJANIC AND M. VUILLEUMIER, On the rate of convergence of Fourier Legendre series
offunctions of bounded variation, J. Approx. Theory 31 (1981),67-79.

7. R. BOJANIC AND D. WATERMAN, On the rate of convergence of Fourier series of functions
of generalized bounded variation, Acad. Sci. Arts, Bosnia and Herzegovina, Radovi LXXIV
(1983).5-11.

8. S. BONAN, Applications of G. Freud's Theory, I, in "Approximation Theory IV"
(e. K. Chui et al., Eds.), pp. 347-351, Academic Press, New York, 1984.

9. F. CHENG, On the rate of convergence of Bernstein polynomials of functions of bounded
variation, J. Approx. Theory 39 (1983), 259-274.

10. F. CHENG, On the rate of convergence of Szasz-Mirakyn operator for functions of
bounded variation, J. Approx. Theory 40 (1984), 226-242.

11. Z. DIVIS, A note on the rate of convergence of Sturm-Liouville expansions, J. Approx.
Theory, to appear.

12. Z. DIVIS, An estimate for Fourier series of functions with derivatives of bounded variation,
manuscript.

13. G. FREUD, Extension of the Dirichlet-Jordan criterion to a general class of orthogonal
polynomial expansions, Acta Math. Hungar., 25 (1974), 109-122.

14. G. FREUD, On the theory of onesided weighted £1 approximation by polynomials, in
"Approximation Theory and Functional Analysis" (P. L. Butzer et al., Eds.), pp.285-303,
Birkhiiuser, Basel, 1974.



FREUD POLYNOMIAL EXPANSIONS 171

15. G. FREUD, On polynomial approximation with respect to general weights, in "Lecture
Notes No.399" (H. G. Garnir et al., Eds.), pp.149-179, Springer-Verlag, Berlin/
New York, 1974.

16. S. M. MAZHAR, An estimate of the rate of convergence of the triangular means of the
Fourier series of functions of bounded variation, Collect. Math. 33 (1982), 187-193.

17. H. N. MHASKAR, A quantitative Dirichlet-Jordan type theorem for orthogonal
polynomial expansions, SIAM J. Math. Anal. 19 (1988), 484-492.

18. H. N. MHASKAR AND E. B. SAFF, Where does the sup norm of a weighted polynomial
live?, Constr. Approx. 1 (1985), 71-91.

19. H. N. MHASKAR AND E. B. SAFF, Where does the U-norm of a weighted polynomial live?,
Trans. Amer. Math. Soc. 303 (1987), 109-124.

20. P. NEVA), Lagrange interpolation at the zeros of orthogonal polynomials, in
"Approximation Theory II", (G. G. Lorentz et al., Eds.), pp.163-203, Academic Press,
New York, 1976.

21. G. SZEGO, "Orthogonal Polynomials," Amer. Math. Soc. Coll. Publ., Vol. 23, Providence.
RI, 1975.


