The Rate of Convergence of Expansions in Freud Polynomials

H. N. Mhaskar*
Department of Mathematics, California State University
Los Angeles, California 90032, U.S.A.

Communicated by R. Bojanic
Received April 14, 1986

Abstract

For a function f of bounded variation on compact intervals, satisfying certain growth conditions, we estimate the rate of convergence of its expansion in a series of polynomials orthogonal on the whole real axis with respect to a weight function, now known as a Freud weight. The case where f has higher order derivatives of bounded variation is also studied. The principal techniques include the finite-infinite range inequalities due to the author and Saff, and Freud's theorems on one-sided weighted L^{1}-approximation. Our theorem holds, in particular, when the weight function is $\exp \left(-x^{m}\right), m$ a positive even integer. © 1988 Academic Press, Inc.

1. Introduction

In 1979, R. Bojanic [1] obtained an estimate on the rate at which the trigonometric Fourier series of a 2π-periodic function of bounded variation converges. His theorem can be stated as follows.

Theorem 1.1 ([1]). Let f be a 2π-periodic function having bounded variation on $[-\pi, \pi]$ and, for $n \geqslant 1$, let $S_{n}(f)$ denote the nth partial sum of the Fourier series of f. Then, for $x \in[-\pi, \pi]$ and $n \geqslant 1$,

$$
\begin{equation*}
\left|S_{n}(f, x)-\frac{1}{2}(f(x+)+f(x-))\right| \leqslant \frac{3}{n} \sum_{k=1}^{n} V\left(\left[0, \frac{\pi}{k}\right], g_{x}^{*}\right), \tag{1.1}
\end{equation*}
$$

where

$$
g_{x}^{*}(t):= \begin{cases}f(x+t)+f(x-t), & t \neq 0 \tag{1.2}\\ f(x+)+f(x-), & t=0\end{cases}
$$

and $\left.V([a, b]), g_{x}^{*}\right)$ denotes the total variation of g_{x}^{*} on $[a, b]$.

[^0]This theorem seems to have inspired a great deal of research in which analogous results have been obtained (e.g., $[2,3,4,6,7,9,10,11,12$, $16,17]$). All of these papers deal with processes defined for functions of bounded variation on compact intervals. Various technical difficulties prevent a straightforward extension of these results to the case of functions supported on the whole real line.

In 1974, G. Freud [13] proved a theorem of Dirichlet-Jordan type for expansions in polynomials orthogonal on the whole real line with respect to a weight function satisfying some mild conditions. We postpone the detailed statement of his results to Section 2 (cf. Theorem 2.1) but make a few comments here. The usual integration-by-parts argument used for obtaining such a theorem for Fourier series did not work because of the lack of detailed information about the orthogonal polynomials. Freud used, instead, a Tauberian argument, involving the comparison of the partial sums of the expansion with their shifted artithmetic averages. The novelty of his ideas in [13] together with the connections between his result and the weighted analogues of Jackson-Favard-type estimates, in our opinion, make [13] an important landmark in the theory of weighted polynomial approximation. Nevertheless, in order for these ideas to work, it is very important that the function being expanded be continuous on the whole real line.
Recent progress in the theory of weighted approximation, particularly [19], has made it possible to use the old integration-by-parts argument again to obtain the rate of convergence of the orthogonal polynomial expansions on the whole real line for functions of bounded variation which are not necessarily continuous. In [5], we studied the case of the expansions in Hermite polynomials, using heavily the special properties of Hermite polynomials. In this paper, we continue these investigations for a more general class of weight functions and also in the case when the function being expanded has higher derivatives. The core of the argument is similar to that in [17]; other key ingredients being the finite-infinite range inequalities of [19] and the one-sided approximation theorem of Freud [14].

In the next section, we state Freud's theorem in [13] as well as our theorem. The proofs are given in Section 3.

I thank Professor Bojanic for his kind encouragement and generous help in this work.

2. Main Results

We consider weight functions of the form $w_{Q}(x):=\exp (-Q(x))$ which satisfy the following conditions:
(W1) Q is an even, convex, positive function on \mathbb{R} and is differentiable and increasing on $(0, \infty)$.
(W2) $Q^{\prime}(x) \rightarrow \infty$ as $x \rightarrow \infty$.
(W3) $1+c_{1}<Q^{\prime}(2 x) / Q^{\prime}(x)<1+c_{2},\left(x>c_{3}\right)$.
(W4) For each sufficiently large n, let q_{n} be the smallest number for which

$$
q_{n} Q^{\prime}\left(q_{n}\right)=n .
$$

Then there exists a constant $B>1$ such that

$$
B q_{n} \leqslant q_{2 n} \leqslant c q_{n}
$$

Here and elsewhere in the paper we adopt the following convention concerning the various constants: we shall denote the constants depending on Q alone by c, c_{1}, c_{2}, etc. However, the same symbol may denote different constants in different formulas. Constants denoted by capital letters, however, retain their value when referred to in different formulas.

Let Π_{n} be the class of all polynomials of degree at most n, $\left\{p_{k}(x):=\gamma_{k} x^{k}+\cdots \in \Pi_{k}, \gamma_{k}>0\right\}$ the system of orthogonal polynomials with respect to w_{Q}^{2} :

$$
\begin{equation*}
\int p_{k}(x) p_{j}(x) w_{Q}^{2}(x) d x=\delta_{k j} \tag{2.1}
\end{equation*}
$$

If $f w_{Q} \in L^{1}(\mathbb{R})$, put

$$
\begin{gather*}
a_{k}:=a_{k}(f):=\int f p_{k} w_{Q}^{2} d x \tag{2.2a}\\
s_{n}\left(w_{Q}^{2}, f, x\right):=s_{n}(f, x):=\sum_{k=0}^{n-1} a_{k} p_{k}(x) . \tag{2.2b}
\end{gather*}
$$

Freud's theorem can now be formulated as follows.
Theorem 2.1 ([13]). Let f be a continuous function on \mathbb{R} which is of bounded variation over every compact interval and

$$
\begin{equation*}
\int w_{Q}|d f|<\infty \tag{2.3}
\end{equation*}
$$

Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|w_{Q}(x)\left[f(x)-s_{n}(f, x)\right]\right\|_{\infty}=0 \tag{2.4}
\end{equation*}
$$

Freud's theorem is, in fact, true under much weaker conditions on the weight function.

Before we state our result, we need to introduce additional notation. If ϕ is a function having bounded variation on compact intervals, and $x \in \mathbb{R}$, we set

$$
g_{x}(\phi, t):= \begin{cases}\phi(t)-\phi(x-), & -\infty<t<x \tag{2.5}\\ 0, & t=x \\ \phi(t)-\phi(x+), & x<t<\infty\end{cases}
$$

If $[a, b] \subset \mathbb{R}$, we set

$$
\begin{equation*}
V_{Q}([a, b], \phi):=\int_{a}^{b} w_{Q}(t)|d \phi(t)| \tag{2.6}
\end{equation*}
$$

Finally, denoting the quantity $\max \left(y^{r}, 0\right)$ by y_{+}^{r}, we put

$$
\Gamma_{r}(t, x):= \begin{cases}(t-x)_{+}^{r}, & r>0 \tag{2.7}\\ (t-x)_{+}^{0}-\frac{1}{2}, & r=0\end{cases}
$$

and

$$
\begin{equation*}
\sigma_{n, r}(x):=s_{n}\left(w_{Q}^{2}, \Gamma_{r}(\cdot, x), x\right) \tag{2.8}
\end{equation*}
$$

Our main theorem can now be stated as follows.
ThEOREM 2.2. Let $r \geqslant 0$ be an integer, f an r-times iterated integral of a function $\phi(=f$ if $r=0)$ having bounded variation on compact intervals. Suppose that

$$
\begin{equation*}
\int_{-\infty}^{\infty} w_{Q}(t)|t|^{r}|d \phi(t)|<\infty \tag{2.9}
\end{equation*}
$$

Assume that the system of orthogonal polynomials satisfies the condition

$$
\begin{equation*}
\left|p_{n}(t) w_{Q}(t)\right| \leqslant c \cdot q_{n}^{-1 / 2}, \quad\left(|t| \leqslant A q_{n}\right) \tag{PB}
\end{equation*}
$$

Then, for $x \in \mathbb{R}$ and $n=1,2, \ldots$,

$$
\begin{align*}
& \left|s_{n}\left(w_{Q}^{2}, f, x\right)-\frac{1}{2}(f(x+)+f(x-))-\frac{[\phi(x+)-\phi(x-)]}{r!} \sigma_{n, r}(x)\right| \\
& \leqslant \\
& \quad c_{1}(x)\left\{\frac{q_{n}^{r}}{n^{r+1}} \sum_{k=1}^{n} V_{Q}\left(\left[x-\frac{q_{n}}{k}, x+\frac{q_{n}}{k}\right], g_{x}(\phi, \cdot)\right)\right. \tag{2.10}\\
& \left.\quad+\int_{c_{2} q_{n}}^{\infty}|t|^{r} w_{Q}(t)|d \phi(t)|\right\}
\end{align*}
$$

In order to see why the first term on the right hand side of (2.10) tends to 0 as $n \rightarrow \infty$, observe that $q_{n} / n \rightarrow 0$ as $n \rightarrow \infty$. Hence, denoting $g_{x}(\phi, \cdot)$ by g,

$$
\begin{equation*}
\frac{1}{n} \sum_{k=1}^{\left[\sqrt{\left.n q_{n}\right]}+1\right.} V_{Q}\left(\left[x-\frac{q_{n}}{k}, x+\frac{q_{n}}{k}\right], g\right) \leqslant c \cdot \sqrt{\frac{q_{n}}{n}} \int w_{Q}|d g| \tag{2.11}
\end{equation*}
$$

while, if $k \geqslant \sqrt{n q_{n}}$ then

$$
\begin{aligned}
& V_{Q}\left(\left[x-\frac{q_{n}}{k}, x+\frac{q_{n}}{k}\right], g\right) \\
& \quad \leqslant V_{Q}\left(\left[x-\sqrt{\frac{q_{n}}{n}}, x+\sqrt{\frac{q_{n}}{n}}\right], g\right)
\end{aligned}
$$

Thus,

$$
\begin{align*}
\frac{1}{n} & \sum_{k=\left[\sqrt{n q_{n}}\right]+1}^{n} V_{Q}\left(\left[x-\frac{q_{n}}{k}, x+\frac{q_{n}}{k}\right], g\right) \\
& \leqslant V_{Q}\left(\left[x-\sqrt{\frac{q_{n}}{n}}, x+\sqrt{\frac{q_{n}}{n}}\right], g\right) . \tag{2.12}
\end{align*}
$$

Since g is continuous at x, so is its variation function. An integration by parts in the formulas for V_{Q} then shows that the right hand side of (2.12) tends to zero as $n \rightarrow \infty$. Estimates (2.11) and (2.12) then show that the first term on the right hand side of (2.10) tends to 0 as $n \rightarrow \infty$.

The Condition (PB) is perhaps unduly stringent. Currently, it is known to be true only in the case when $Q(x)=x^{m}, m$ being an even, positive integer [8]. In [20], it is conjectured that such an estimate is true also when $Q(x)=|x|^{\alpha}, \alpha>1$.

When $Q(x)=x^{2}$, then the orthogonal polynomials are precisely the Hermite polynomials. In this case, we found an asymptotic expression for $\sigma_{n, r}(x)$ in [5]. In the general case, it is easy to check that $\sigma_{n, r}(x)=\mathcal{O}\left(q_{n} / n\right)^{r}$; but a better estimate would be desirable.

The proof of our theorem depends upon the relationship between various constants. For the convenience of the reader, we give a list of a few constants which will be used often along with the location where they first occur.

Symbol	Location
A	Condition (PB) in Theorem 2.2
A^{*}	Formula (3.42)
B	Condition (W4) on the weight function
B_{1}	Lemma 3.1(b), Formula (3.6)
B_{2}	Lemma 3.1(c)
B_{3}	Lemma 3.1(c)
γ	Formula (3.17)
D	Lemma 3.1(d)
K	Formula (3.17)
L	Formula (3.44)

3. Proof

Before we proceed to prove Theorem 2.2, we summarize some known estimates as well as certain computational aspects of our proof in the following lemma.

Lemma 3.1. (a) Let

$$
\begin{equation*}
K_{n}(x, t):=\sum_{k=0}^{n-1} p_{k}(x) p_{k}(t) . \tag{3.1}
\end{equation*}
$$

Then

$$
\begin{equation*}
K_{n}(x, t)=\frac{\gamma_{n-1}}{\gamma_{n}} \frac{p_{n}(x) p_{n-1}(t)-p_{n-1}(x) p_{n}(t)}{x-t} \tag{3.2}
\end{equation*}
$$

For $K_{n}(x, x)$, we have the following:

$$
\begin{equation*}
K_{n}(x, x) \leqslant c \cdot \frac{n}{q_{n}} w_{Q}^{-2}(x), \quad x \in \mathbb{R} \tag{3.3}
\end{equation*}
$$

(b) Let $m \geqslant 1$ be an integer, a_{m} be defined by the formula

$$
\begin{equation*}
m=\frac{2}{\pi} \int_{0}^{1} \frac{a_{m} x Q^{\prime}\left(a_{m} x\right)}{\sqrt{1-x^{2}}} d x \tag{3.4}
\end{equation*}
$$

If $P \in \Pi_{m}$ satisfies

$$
\begin{equation*}
\int_{|t| \geqslant 2 a_{m}}\left|P(t) w_{Q}(t)\right| d t \leqslant 1 \tag{3.5}
\end{equation*}
$$

then

$$
\begin{equation*}
\int_{|t| \geqslant 2 a_{m}}\left|P(t) w_{Q}(t)\right|^{2} d t \leqslant c \exp \left(-B_{1} m\right) \tag{3.6}
\end{equation*}
$$

(c) There exist positive constants B_{2}, B_{3} with $B_{2}<1$ such that whenever $P \in \Pi_{\left[B_{2} n\right]}$ and

$$
\begin{equation*}
\int_{|t| \leqslant A q_{n}}\left|P(t) w_{Q}(t)\right| d t \leqslant 1 \tag{3.7}
\end{equation*}
$$

we have

$$
\begin{equation*}
\int_{|t| \geqslant A q_{n}}\left|P(t) w_{Q}(t)\right|^{2} d t \leqslant c \cdot \exp \left(-B_{3} n\right), \tag{3.8}
\end{equation*}
$$

where A is the constant appearing in (PB).
(d) There exists a constant D such that for $|y| \leqslant D q_{n}$,

$$
\begin{equation*}
\exp \left(-\frac{B_{3} n}{8}\right) \leqslant c \cdot w_{Q}(y) \tag{3.9}
\end{equation*}
$$

(e) For any $D_{1}>0$, if $z \geqslant D_{1} q_{n}$ then

$$
\begin{equation*}
\int_{z}^{\infty} v^{r} w_{Q}(v) d v \leqslant c \cdot \frac{q_{n}}{n} z^{r} w_{Q}(z) . \tag{3.10}
\end{equation*}
$$

(f) For any $D_{1}>0$, if $|x| \leqslant \frac{1}{4} D_{1} q_{n}$ and $0 \leqslant u \leqslant \frac{1}{2} D_{1} q_{n}$, we have

$$
\begin{equation*}
w_{Q}\left(x+D_{1} q_{n}\right) \leqslant c_{1} \exp \left(-c_{2} n\right) w_{Q}(x+u) . \tag{3.11}
\end{equation*}
$$

(g) For $x \in \mathbb{R}, t>0$, and integers $n \geqslant r \geqslant 0$, let

$$
\begin{align*}
& G(t):=\frac{1}{r!t} \int_{0}^{t}(t-u)^{r} d g_{x}(\phi, x+u) \tag{3.12}\\
& A_{n}(t):=\frac{1}{r!} \int_{t}^{\infty}(t-u)^{r} p_{n}(x+u) w_{Q}^{2}(x+u) d u \tag{3.13}
\end{align*}
$$

Then, for integer $k, 0 \leqslant k \leqslant r$, and $|x+t| \leqslant D q_{n}$

$$
\begin{align*}
& \left|G^{(k)}(t)\right| \leqslant c \cdot t^{r-k-1} \int_{0}^{t}\left|d g_{x}(\phi, x+u)\right| \tag{3.14}\\
& \left|A_{n}^{(k)}(t)\right| \leqslant c\left(\frac{q_{n}}{n}\right)^{r-k+1} q_{n}^{-1 / 2} w_{Q}(x+t), \quad n \geqslant c_{1} \tag{3.15}
\end{align*}
$$

Proof of Lemma 3.1. Part (a) was proved in [15]. Part (b) is a special case of Theorem 2.7(b) of [19] (cf. Example 3, pp. 76-78 in [18]). Since $Q^{\prime}(x)$ is increasing, (3.4) implies that

$$
\begin{equation*}
q_{m} \leqslant a_{m} \leqslant 3 q_{m} \tag{3.16}
\end{equation*}
$$

In view of Assumption (W4) on the weight function, we may find B_{2}, $0<B_{2}<1$, such that with $m=\left[B_{2} n\right]$,

$$
2 a_{m} \leqslant 6 q_{m} \leqslant A q_{n}
$$

Part (c) now follows with $B_{3}:=B_{2} B_{1} / 2$. In view of Assumption (W3), we see that for any $D_{2}>0$

$$
\begin{equation*}
D_{2} q_{n} Q^{\prime}\left(D_{2} q_{n}\right) \leqslant K \cdot D_{2}^{\gamma} n \tag{3.17}
\end{equation*}
$$

for some constants K and γ independent of D_{2} or n. Hence, for $D:=\left(B_{3} / 8 K\right)^{1 / \gamma}$,

$$
\begin{equation*}
D q_{n} Q^{\prime}\left(D q_{n}\right) \leqslant B_{3} n / 8 \tag{3.17a}
\end{equation*}
$$

So, if $|y| \leqslant D q_{n}$

$$
\begin{align*}
Q(y) & =Q(|y|) \leqslant Q\left(D q_{n}\right)=Q(0)+\int_{0}^{D q_{n}} Q^{\prime}(t) d t \\
& \leqslant D q_{n} Q^{\prime}\left(D q_{n}\right)+Q(0) \leqslant Q(0)+B_{3} n / 8 \tag{3.18}
\end{align*}
$$

This yields (3.9).
In order to prove part (e), observe that for $v \geqslant c$,

$$
\begin{equation*}
\left[v^{r} w_{Q}^{1 / 2}(v)\right]^{\prime}=\frac{1}{2} v^{r-1}\left[2 r-v Q^{\prime}(v)\right] \cdot w_{Q}^{1 / 2}(v)<0 \tag{3.19}
\end{equation*}
$$

Also, if $v \geqslant z \geqslant D_{1} q_{n}$, then $Q^{\prime}(v) \geqslant c \cdot n / q_{n}$. So, for $v \geqslant z$,

$$
\begin{equation*}
v^{r} w_{Q}(v) \leqslant z^{r} w_{Q}^{1 / 2}(z) \cdot c \frac{q_{n}}{n} Q^{\prime}(v) w_{Q}^{1 / 2}(v) \tag{3.20}
\end{equation*}
$$

Integrating both sides of (3.20) with respect to v between z and ∞, we get (3.10). To prove part (f), we first prove that

$$
\begin{equation*}
w_{Q}\left(x+\frac{D_{1} q_{n}}{2}\right) \leqslant w_{Q}(x+u) \tag{3.21}
\end{equation*}
$$

Indeed, this is obvious when $x+u \geqslant 0$. If $x+u<0$ then

$$
\begin{equation*}
|x+u|=-u-x \leqslant|x| \leqslant \frac{D_{1}}{4} q_{n} \leqslant \frac{D_{1}}{2} q_{n}-|x|=\left|x+\frac{D_{1} q_{n}}{2}\right| . \tag{3.22}
\end{equation*}
$$

This gives (3.21) in this case also. Now,

$$
\begin{align*}
\left|Q\left(x+D_{1} q_{n}\right)-Q\left(x+\frac{D_{1} q_{n}}{2}\right)\right| & \leqslant \int_{D_{1} q_{n} / 2}^{D_{1} q_{n}} Q^{\prime}(x+t) d t \\
& \leqslant c \cdot q_{n} Q^{\prime}\left(D_{1} q_{n} / 4\right) \leqslant c \cdot n . \tag{3.23}
\end{align*}
$$

The Estimate (3.11) follows from (3.23) and (3.22).
The fact that (3.12) implies (3.14) is a simple application of Leibnitz's formula. Further

$$
\begin{equation*}
\Lambda_{n}^{(k)}(t)=\int_{-\infty}^{\infty}(x+t-v)_{+}^{r-k} p_{n}(v) w_{Q}^{2}(v) d v \tag{3.24}
\end{equation*}
$$

Let $m:=\left[B_{2} n\right]$. Then, in view of a theorem of G. Freud on one-sided weighted L^{1}-approximation, there exists a polynomial $P \in \Pi_{m}$ such that

$$
\begin{equation*}
\int_{-\infty}^{\infty}\left|(x+t-v)_{+}^{r-k}-P(v)\right| w_{Q}(v) d v \leqslant c \cdot\left(\frac{q_{m}}{m}\right)^{r-k+1} w_{Q}(x+t) \tag{3.25}
\end{equation*}
$$

(cf. [14], Lemmas 2.1, 5.1, and the Estimate (5.15). Note, however, the difference in notation.) Since p_{n} is orthogonal to P, we see that

$$
\begin{equation*}
\left|\Lambda_{n}^{(k)}(t)\right|=\left|\int_{-\infty}^{\infty}\left[(x+t-v)_{+}^{r-k}-P(v)\right] p_{n}(v) w_{Q}^{2}(v) d v\right| \leqslant J_{1}+J_{2} \tag{3.26}
\end{equation*}
$$

where

$$
\begin{align*}
J_{1} & :=\int_{|v| \leqslant A q_{n}}\left|(x+t-v)_{+}^{r-k}-P(v)\right| w_{Q}(v)\left|p_{n}(v) w_{Q}(v)\right| d v \tag{3.27a}\\
J_{2} & :=\int_{|v| \geqslant A q_{n}}\left|(x+t-v)_{+}^{r-k}-P(v)\right| w_{Q}(v) \cdot\left|p_{n}(v) w_{Q}(v)\right| d v . \tag{3.27b}
\end{align*}
$$

In view of (3.25) and Assumption (PB) on orthogonal polynomials, we have

$$
\begin{equation*}
J_{1} \leqslant c \cdot q_{n}^{-1 / 2}\left(q_{n} / n\right)^{r-k+1} w_{Q}(x+t) . \tag{3.28}
\end{equation*}
$$

Also, if $|x+t| \leqslant D q_{n}, P_{1}(v):=(x+t-v)^{r-k}-P(v) \in \Pi_{m}$ satisfies, in view of (3.25),

$$
\begin{equation*}
\int_{|v| \leqslant A q_{n}}\left|P_{1}(v)\right| w_{Q}(v) d x \leqslant c \cdot q_{n}^{r-k} . \tag{3.29}
\end{equation*}
$$

So, part (c) of this Lemma implies that

$$
\begin{equation*}
\int_{|v| \geqslant A q_{n}}\left|P_{1}(v)\right| w_{Q}(v) d v \leqslant c \cdot \exp \left(-\frac{1}{2} B_{3} n\right) . \tag{3.30a}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\int_{|v| \geqslant A q_{n}}|P(v)| w_{Q}(v) d v \leqslant c \cdot \exp \left(-\frac{1}{2} B_{3} n\right) . \tag{3.30b}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\int_{|v| \geqslant A q_{n}}\left|(x+t-v)_{+}^{r-k}-P(v)\right| w_{Q}(v) d v \leqslant c \cdot \exp \left(-\frac{1}{2} B_{3} n\right) . \tag{3.30c}
\end{equation*}
$$

The part (a) of this Lemma implies that $\left|p_{n}(v)\right| w_{Q}(v) \leqslant c \cdot\left(n / q_{n}\right)^{1 / 2}$ for all $v \in \mathbb{R}$. So, (3.30c) yields

$$
\begin{equation*}
J_{2} \leqslant c \cdot \exp \left(-\frac{1}{4} B_{3} n\right) . \tag{3.31}
\end{equation*}
$$

Since $|x+t| \leqslant D q_{n}$, part (d) of this lemma now gives

$$
\begin{equation*}
J_{2} \leqslant c \cdot \exp \left(-\frac{1}{8} B_{3} n\right) w_{Q}(x+t) \leqslant c\left(\frac{q_{n}}{n}\right)^{r-k+1} q_{n}^{-1 / 2} w_{Q}(x+t) . \tag{3.32}
\end{equation*}
$$

Substituting from (3.32) and (3.28) into (3.26), we get (3.15).
In the proof of (3.15), we did not really use the fact that p_{n} is a polynomial; merely that it is orthogonal to Π_{n-1}. Thus, the same proof gives us the following analogue of H. Bohr-type inequality. We shall not need it in this paper, but record it here for a possible future reference.

Proposition 3.2. Let $w_{Q} F \in L^{\infty}(\mathbb{R}), n \geqslant c$ be an integer, $0<\beta<1$,

$$
\begin{align*}
& \text { ess } \sup \left\{\left|w_{Q}(t) F(t)\right|:|t| \leqslant \beta q_{n}\right\}=: M_{1, n} \tag{3.33a}\\
& \text { ess } \sup \left\{\left|w_{Q}(t) F(t)\right|:|t| \geqslant \beta q_{n}\right\}=: M_{2, n} . \tag{3.33b}
\end{align*}
$$

Suppose that for every $P \in \Pi_{n}$,

$$
\begin{equation*}
\int_{-\infty}^{\infty} P(t) F(t) w_{Q}^{2}(t) d t=0 . \tag{3.34}
\end{equation*}
$$

Let, for an integer $r \geqslant 0$,

$$
\begin{equation*}
\mathscr{F}_{r}(y):=\frac{1}{r!} \int_{-\infty}^{y}(y-u)^{r} F(u) w_{Q}^{2}(u) d u \tag{3.35}
\end{equation*}
$$

Then, for $|y| \leqslant c(\beta, r) q_{n}$,

$$
\begin{equation*}
\left|w_{Q}^{-1}(y) \mathscr{F}_{r}(y)\right| \leqslant c_{1}\left\{\left(\frac{q_{n}}{n}\right)^{r+1} M_{1, n}+\exp \left(-c_{2} n\right) M_{2, n}\right\}, \tag{3.36}
\end{equation*}
$$

where c_{1} and c_{2} are positive constants depending only upon Q, β, and r.
For $r=0$, a cruder form of this proposition was proved by G. Freud in [15]. From this proposition (in its cruder form), Freud then obtained the direct theorems of weighted polynomial approximation. We shall not pursue this line of thought here.

We now return to the proof of Theorem 2.2. We observe that when $r=0$ and hence $f=\phi$, we have (cf. (2.5), (2.7)), for $t \neq x$,

$$
\begin{equation*}
f(t)=\frac{f(x+)+f(x-)}{2}+[f(x+)-f(x-)] \Gamma_{0}(t, x)+g_{x}(t) \tag{3.37}
\end{equation*}
$$

When $r>0$ then $[f(x+)+f(x-)] / 2=f(x)$ and the fact that f is an r-times iterated integral of ϕ can be reformulated to state that for $t \neq x$,

$$
\begin{equation*}
f(t)=P(x, t)+\frac{1}{(r-1)!} \int_{x}^{t}(t-u)^{r-1} \phi(u) d u \tag{3.38}
\end{equation*}
$$

where $P(x, \cdot) \in \Pi_{r}$ and $P(x, x)=f(x)$. A simple computation now gives for $t \neq x$,

$$
\begin{equation*}
f(t)=P(x, t)+\frac{[\phi(x+)-\phi(x-)]}{r!} \Gamma_{r}(t, x)+F(x, t), \tag{3.39}
\end{equation*}
$$

where

$$
\begin{align*}
F(x, t) & =\frac{1}{(r-1)!} \int_{x}^{t}(t-u)^{r-1} g_{x}(\phi, u) d u \\
& =\frac{1}{r!} \int_{x}^{t}(t-u)^{r} d g_{x}(\phi, u) \tag{3.40}
\end{align*}
$$

If $r=0$, we let $F(x, t):=g_{x}(\phi, t)$. Since $s_{n}\left(w_{Q}^{2}, P(x, \cdot), x\right)=P(x, x)=f(x)$, we see from (3.37) and (3.39) that

$$
\begin{align*}
& s_{n}\left(w_{Q}^{2}, f, x\right)-\frac{f(x+)+f(x-)}{2}-\frac{[\phi(x+)-\phi(x-)]}{r!} \sigma_{n, r}(x) \\
& \quad=s_{n}\left(w_{Q}^{2}, F(x, \cdot), x\right) \tag{3.41}
\end{align*}
$$

Thus, the proof of Theorem 2.2 consists of an estimation of $s_{n}\left(w_{Q}^{2}, F(x, \cdot), x\right)$. We now fix x, and for simplicity of notation, write $F(t)$ instead of $F(x, t)$ and $g(t)$ instead of $g_{x}(\phi, t)$. Set

$$
\begin{equation*}
A^{*}:=\min \left(A, \frac{1}{90} D\right) \tag{3.42}
\end{equation*}
$$

where A is the constant appearing in Condition (PB) on orthogonal polynomials and D is the constant given by Lemma 3.1(d). Assume that n is so large that

$$
\begin{equation*}
|x| \leqslant A^{*} q_{n} . \tag{3.43}
\end{equation*}
$$

Further, let

$$
\begin{equation*}
L:=\frac{1}{2} D . \tag{3.44}
\end{equation*}
$$

Next, we observe that (cf. [21], p. 39),

$$
\begin{align*}
s_{n}\left(w_{Q}^{2}, F, x\right) & =\int_{-\infty}^{\infty} K_{n}(x, x+t) F(x+t) w_{Q}^{2}(x+t) d t \\
& =I_{1}+I_{2}+I_{3}+I_{4}+I_{5} \tag{3.45}
\end{align*}
$$

where, with $H(t):=K_{n}(x, x+t) F(x+t) w_{Q}^{2}(x+t)$,

$$
\begin{align*}
& I_{1}:=\int_{|t| \leqslant q_{n} / n} H(t) d t \tag{3.46a}\\
& I_{2}:=\int_{-\infty}^{-L q_{n}} H(t) d t, \quad I_{3}:=\int_{L q_{n}}^{\infty} H(t) d t \tag{3.46b}\\
& I_{4}:=\int_{-L q_{n}}^{-q_{n} / n} H(t) d t, \quad I_{5}:=\int_{q_{n} / n}^{L q_{n}} H(t) d t . \tag{3.46c}
\end{align*}
$$

We shall estimate I_{1}, I_{3}, I_{5}, the estimation of I_{2} and I_{4} being similar to that
of I_{3} and I_{5}, respectively. The estimation of I_{1} is the simplest. From Lemma 3.1(a), we see that

$$
\begin{align*}
K_{n}(x, x+t) & \leqslant \sqrt{K_{n}(x, x)} \cdot \sqrt{K_{n}(x+t, x+t)} \\
& \leqslant c \cdot \frac{n}{q_{n}} w_{Q}^{-1}(x) w_{Q}^{-1}(x+t) \tag{3.47}
\end{align*}
$$

Hence,

$$
\begin{equation*}
\left|I_{1}\right| \leqslant c \cdot \frac{n}{q_{n}} w_{Q}^{-1}(x) \int_{|t| \leqslant q_{n} / n}|F(x+t)| w_{Q}(x+t) d t \tag{3.48}
\end{equation*}
$$

But, from (3.40), if $|t| \leqslant q_{n} / n$, then

$$
\begin{align*}
|F(x+t)| & =\left|\frac{1}{r!} \int_{0}^{t}(t-u)^{r} d g(x+u)\right| \\
& \leqslant c\left(\frac{q_{n}}{n}\right)^{r} \int_{-q_{n} / n}^{q_{n} / n}|d g(x+u)| \tag{3.49}
\end{align*}
$$

Also, if $|t-u| \leqslant 2 q_{n} / n$, (3.43) shows that

$$
\begin{equation*}
|Q(x+t)-Q(x+u)| \leqslant c \cdot \frac{q_{n}}{n} Q^{\prime}\left(2 A^{*} q_{n}\right) \leqslant c \tag{3.50}
\end{equation*}
$$

Hence,

$$
\begin{aligned}
|F(x+t)| w_{Q}(x+t) & \leqslant c \cdot\left(\frac{q_{n}}{n}\right)^{r+1} \int_{-q_{n} / n}^{q_{n} / n} w_{Q}(x+u)|d g(x+u)| \\
& =c \cdot\left(\frac{q_{n}}{n}\right)^{r+1} V_{Q}\left(\left[x-\frac{q_{n}}{n}, x+\frac{q_{n}}{n}\right], g\right)
\end{aligned}
$$

Hence, (3.48) yields that

$$
\begin{equation*}
\left|I_{1}\right| \leqslant c \cdot w_{Q}^{-1}(x) \cdot\left(\frac{q_{n}}{n}\right)^{r} V_{Q}\left(\left[x-\frac{q_{n}}{n}, x+\frac{q_{n}}{n}\right], g\right) \tag{3.51}
\end{equation*}
$$

Next, we estimate I_{3}. In view of (3.47),

$$
\begin{align*}
\left|I_{3}\right| & =\frac{1}{r!}\left|\int_{L q_{n}}^{\infty} K_{n}(x, x+t) w_{Q}^{2}(x+t) \int_{0}^{t}(t-u)^{r} d g(x+u) d t\right| \\
& \leqslant c \cdot \frac{n}{q_{n}} w_{Q}^{-1}(x)\left(\left|I_{3,1}\right|+\left|I_{3,2}\right|+\left|I_{3,3}\right|\right) \tag{3.52}
\end{align*}
$$

where

$$
\begin{align*}
& I_{3,1}:=\int_{L q_{n}}^{\infty} w_{Q}(x+t) \int_{0}^{L q_{n} / 2}|t-u|^{r}|d g(x+u)| d t \tag{3.53a}\\
& I_{3,2}:=\int_{L q_{n}}^{\infty} w_{Q}(x+t) \int_{L q_{n} / 2}^{L q_{n}}|t-u|^{r}|d g(x+u)| d t \tag{3.53b}\\
& I_{3,3}:=\int_{L q_{n}}^{\infty} w_{Q}(x+t) \int_{L q_{n}}^{t}|t-u|^{r}|d g(x-u)| d t . \tag{3.53c}
\end{align*}
$$

If we interchange the order of integration in $I_{3,1}$ and $I_{3,2}$ and then put $v:=x+t$, we get

$$
\begin{align*}
& I_{3,1}=\int_{0}^{L q_{n} / 2} \int_{x+L q_{n}}^{\infty} w_{Q}(v)|v-x-u|^{r} d v|d g(x+u)| \tag{3.54a}\\
& I_{3,2}=\int_{L q_{n} / 2}^{L q_{n}} \int_{x+L q_{n}}^{\infty} w_{Q}(v)|v-x-u|^{r} d v|d g(x+u)| . \tag{3.54b}
\end{align*}
$$

We estimate the inner integral in both of these integrals first. In both $I_{3,1}$ and $I_{3,2}$ we have $|x| \leqslant A^{*} q_{n} \leqslant(D / 90) q_{n}=(L / 45) q_{n} \leqslant(L / 8) q_{n}, u \leqslant L q_{n}$, and $v \geqslant x+L q_{n}$, So,

$$
\begin{align*}
|v-(x+u)| & \leqslant|v|+|x+u| \leqslant|v|+\left(A^{*}+L\right) q_{n} \\
& \leqslant v+\frac{9}{8} L q_{n}=v+\frac{9}{7}\left(L q_{n}-\frac{L q_{n}}{8}\right) \\
& \leqslant v+\frac{9}{7}\left(L q_{n}+x\right) \leqslant \frac{16}{7} v . \tag{3.55}
\end{align*}
$$

Moreover, $x+L q_{n} \geqslant L q_{n}-|x| \geqslant \frac{7}{8} L q_{n}$. Thus, we may use Lemma 3.1(e) with $\frac{7}{8} L$ in place of D_{1} to get

$$
\begin{align*}
\int_{x+L q_{n}}^{\infty} & |v-(x+u)|^{r} w_{Q}(v) d v \\
& \leqslant c \cdot \int_{x+L q_{n}}^{\infty}|v|^{r} w_{Q}(v) d v \\
& \leqslant c \cdot \frac{q_{n}}{n}\left(x+L q_{n}\right)^{r} w_{Q}\left(x+L q_{n}\right) . \tag{3.56}
\end{align*}
$$

Substituting this in (3.54), we have

$$
\begin{align*}
& \left|I_{3,1}\right| \leqslant c \cdot \frac{q_{n}}{n}\left|x+L q_{n}\right|^{r} w_{Q}\left(x+L q_{n}\right) \int_{0}^{L q_{n} / 2}|d g(x+u)| \tag{3.57a}\\
& \left|I_{3,2}\right| \leqslant c \cdot \frac{q_{n}}{n}\left|x+L q_{n}\right|^{r} w_{Q}\left(x+L q_{n}\right) \int_{L q_{n} / 2}^{L q_{n}}|d g(x+u)| \tag{3.57b}
\end{align*}
$$

Our next objective is to bring the w_{Q} term inside the integral. In $I_{3,1}$, $u \leqslant \frac{1}{2} L q_{n}$ and $|x| \leqslant \frac{1}{4} L q_{n}$. So, we apply Lemma 3.1 (f) to get

$$
w_{Q}\left(x+L q_{n}\right) \leqslant c_{1} \exp \left(-c_{2} n\right) w_{Q}(x+u)
$$

Since $\left|x+L q_{n}\right| \leqslant c q_{n}$, we now obtain that

$$
\begin{equation*}
\left|I_{3,1}\right| \leqslant c \cdot \exp \left(-c_{2} n\right) \int_{0}^{L q_{n} / 2} w_{Q}(x+u)|d g(x+u)| \tag{3.58}
\end{equation*}
$$

In $I_{3,2} x+u \geqslant u-|x| \geqslant\left(\frac{1}{2} L-(L / 8)\right) q_{n}>0$. So, $w_{Q}\left(x+L q_{n}\right) \leqslant w_{Q}(x+u)$. Also,

$$
\left|x+L q_{n}\right|^{r} \leqslant c q_{n}^{r} \leqslant c(x+u)^{r}
$$

Hence, (3.57b) gives

$$
\begin{align*}
\left|I_{3,2}\right| & \leqslant c \cdot \frac{q_{n}}{n} \int_{L q_{n} / 2}^{L q_{n}}|x+u|^{r} w_{Q}(x+u)|d g(x+u)| \\
& \leqslant c \cdot \frac{q_{n}}{n} \int_{x+(L / 2) q_{n}}^{\infty}|t|^{r} w_{Q}(t)|d g(t)| \tag{3.59}
\end{align*}
$$

Next, we estimate $I_{3,3}$. Interchanging the order of integration in (3.53c),

$$
\begin{equation*}
I_{3,3}=\int_{L \psi_{n}}^{\infty} \int_{x+u}^{\infty}(v-x-u)^{r} w_{Q}(v) d v|d g(x+u)| \tag{3.60}
\end{equation*}
$$

Since $x+u \geqslant L q_{n}-|x| \geqslant \frac{7}{8} L q_{n}$, we may use Lemma 3.1(e) again with $\frac{7}{8} L$ in place of D_{1} to get

$$
\int_{x+u}^{\infty}(v-x-u)^{r} w_{Q}(v) d v \leqslant c \cdot \frac{q_{n}}{n}(x+u)^{r} w_{Q}(x+u)
$$

Substituting this into (3.60), we get

$$
\begin{align*}
\left|I_{3,3}\right| & \leqslant c \cdot \frac{q_{n}}{n} \int_{L q_{n}}^{\infty}|x+u|^{r} w_{Q}(x+u)|d g(x+u)| \\
& \leqslant c \cdot \frac{q_{n}}{n} \int_{x+(L / 2) q_{n}}^{\infty}|t|^{r} w_{Q}(t)|d g(t)| \tag{3.61}
\end{align*}
$$

In view of (3.58), (3.59), (3.61), and (3.52), we have

$$
\begin{align*}
\left|I_{3}\right| \leqslant & c \cdot w_{Q}^{-1}(x)\left\{e^{-c_{1} n} V_{Q}\left(\left[x, x+\frac{L}{2} q_{n}\right], g\right)\right. \\
& \left.+\int_{x+(L / 2) q_{n}}^{\infty} t^{r} w_{Q}(t)|d g(t)|\right\} \tag{3.62}
\end{align*}
$$

Next, we turn to the estimation of I_{5}. This estimation is done using an integration by parts argument similar to the one in [17]. The details are, however, more complicated partly because we need an estimate involving V_{Q} instead of the ordinary total variation. In view of (3.2), we may write

$$
\begin{equation*}
I_{5}=\frac{\gamma_{n-1}}{\gamma_{n}}\left\{p_{n-1}(x) I_{5,1}-p_{n}(x) I_{5,2}\right\} \tag{3.63}
\end{equation*}
$$

where, with the notation (3.12) and (3.13),

$$
\begin{align*}
& I_{5,1}:=\int_{q_{n} / n}^{L q_{n}} p_{n}(x+t) G(t) w_{Q}^{2}(x+t) d t \tag{3.64a}\\
& I_{5,2}:=\int_{q_{n} / n}^{L q_{n}} p_{n-1}(x+t) G(t) w_{Q}^{2}(x+t) d t \tag{3.64b}
\end{align*}
$$

Now, using the inequality [15]

$$
\begin{equation*}
\gamma_{n-1} / \gamma_{n} \leqslant c q_{n} \tag{3.65}
\end{equation*}
$$

and Condition (PB), for $|x| \leqslant A^{*} q_{n}$,

$$
\begin{equation*}
\left|I_{5}\right| \leqslant c \cdot q_{n}^{1 / 2} w_{Q}^{-1}(x)\left\{\left|I_{5,1}\right|+\left|I_{5,2}\right|\right\} \tag{3.66}
\end{equation*}
$$

We shall estimate $I_{5,1}$; the estimate for $I_{5,2}$ is similar. With the notation of (3.13),

$$
\begin{equation*}
I_{5,1}=\int_{q_{n} / n}^{L q_{n}}(-1)^{r+1} \Lambda_{n}^{(r+1)}(t) G(t) d t \tag{3.67}
\end{equation*}
$$

Integrating by parts several times,

$$
\begin{align*}
I_{5,1}= & \sum_{k=0}^{r}(-1)^{k}\left[G^{(k)}\left(L q_{n}\right) \Lambda_{n}^{(r-k)}\left(L q_{n}\right)-G^{(k)}\left(\frac{q_{n}}{n}\right) \Lambda_{n}^{(r-k)}\left(\frac{q_{n}}{n}\right)\right] \\
& +\int_{q_{n} / n}^{L q_{n}} \Lambda_{n}(t) d G^{(r)}(t) \tag{3.68}
\end{align*}
$$

To estimate the integrated terms, we recall that when $q_{n} / n \leqslant t \leqslant L q_{n}$, $|x+t| \leqslant \frac{1}{8} L q_{n}+L q_{n} \leqslant D q_{n}$. So, Lemma 3.1(g) can be applied to get

$$
\begin{align*}
& \left|G^{(k)}\left(L q_{n}\right) \Lambda_{n}^{(r-k)}\left(L q_{n}\right)\right| \\
& \quad \leqslant c \cdot q_{n}^{-1 / 2} \frac{q_{n}^{r}}{n^{k+1}} w_{Q}\left(x+L q_{n}\right) \int_{0}^{L q_{n}}|d g(x+u)| \tag{3.69}\\
& \left|G^{(k)}\left(\frac{q_{n}}{n}\right) \Lambda_{n}^{(r-k)}\left(\frac{q_{n}}{n}\right)\right| \\
& \quad \leqslant c \cdot q_{n}^{-1 / 2}\left(\frac{q_{n}}{n}\right)^{r} w_{Q}\left(x+\frac{q_{n}}{n}\right) \int_{0}^{q_{n} / n}|d g(x+u)| \tag{3.70}
\end{align*}
$$

Now, when $0 \leqslant u \leqslant q_{n} / n$ and $|x| \leqslant A^{*} q_{n}$,

$$
\left|Q\left(x+\frac{q_{n}}{n}\right)-Q(x+u)\right| \leqslant c \cdot \frac{q_{n}}{n} Q^{\prime}\left(A^{*} q_{n}\right) \leqslant c
$$

and so,

$$
\begin{equation*}
\left|G^{(k)}\left(\frac{q_{n}}{n}\right) \Lambda_{n}^{(r-k)}\left(\frac{q_{n}}{n}\right)\right| \leqslant c \cdot q_{n}^{-1 / 2}\left(\frac{q_{n}}{n}\right)^{r} V_{Q}\left(\left[x, x+\frac{q_{n}}{n}\right], g\right) \tag{3.71}
\end{equation*}
$$

The estimation of the right hand side of (3.69) is similar to that of $I_{3,1}$ and $I_{3,2}$ of (3.53). Thus, if ($L / 2$) $q_{n} \leqslant u \leqslant L q_{n}$ then

$$
x+L q_{n} \geqslant x+u \geqslant x+\frac{L}{2} q_{n}>0
$$

Then $w_{Q}\left(x+L q_{n}\right) \leqslant w_{Q}(x+u)$ and $q_{n}^{r} \leqslant c|x+u|^{r}$. Hence,

$$
\begin{align*}
& q_{n}^{r} w_{Q}\left(x+L q_{n}\right) \int_{L q_{n} / 2}^{L q_{n}}|d g(x+u)| \\
& \quad \leqslant c \int_{L q_{n} / 2}^{\infty}|x+u|^{r} w_{Q}(x+u)|d g(x+u)| \\
& \quad=c \int_{x+L q_{n} / 2}^{\infty}|t|^{r} w_{Q}(t)|d g(t)| \tag{3.72}
\end{align*}
$$

If $0 \leqslant u \leqslant(L / 2) q_{n}$, then we may apply Lemma 3.1 (f) to get

$$
w_{Q}\left(x+L q_{n}\right) \leqslant c \cdot \exp \left(-c_{1} n\right) w_{Q}(x+u)
$$

So,

$$
\begin{equation*}
q_{n}^{r} w_{Q}\left(x+L q_{n}\right) \int_{0}^{L q_{n} / 2}|d g(x+u)| \leqslant c_{1} e^{-c_{2} n} V_{Q}\left(\left[x, x+\frac{L q_{n}}{2}\right], g\right) . \tag{3.73}
\end{equation*}
$$

Substituting from (3.72) and (3.73) in (3.69), we get

$$
\begin{align*}
\left|G^{(k)}\left(L q_{n}\right) \Lambda_{n}^{(r-k)}\left(L q_{n}\right)\right| \leqslant & c q_{n}^{-1 / 2}\left\{e^{-c c_{2} n} V_{Q}\left(\left[x, x+\frac{L q_{n}}{2}\right], g\right)\right. \\
& \left.+\int_{x+(L / 2) q_{n}}^{\infty}|t|^{r} w_{Q}(t)|d g(t)|\right\} . \tag{3.74}
\end{align*}
$$

Next, we have to estimate the integral expression in (3.68). Using (3.15) with $k=0$, we see that

$$
\begin{equation*}
\left|\int_{q_{n} / n}^{L q_{n}} A_{n}(t) d G^{(r)}(t)\right| \leqslant c q_{n}^{-1 / 2}\left(\frac{q_{n}}{n}\right)^{r+1} \int_{q_{n} / n}^{L q_{n}} w_{Q}(x+t)\left|d G^{(r)}(t)\right| . \tag{3.75}
\end{equation*}
$$

An application of Leibnitz's formula now yields that

$$
\begin{align*}
& \int_{q_{n} / n}^{L q_{n}} w_{Q}(x+t)\left|d G^{(r)}(t)\right| \\
& \quad \leqslant c \int_{q_{n} / n}^{L q_{n}} \frac{w_{Q}(x+t)}{t^{2}} \int_{0}^{t}|d g(x+u)| d t \\
& \quad+c \int_{q_{n} / n}^{L q_{n}} \frac{w_{Q}(x+t)|d g(x+t)|}{t} \tag{3.76}
\end{align*}
$$

The last integral above can be estimated as usual. We integrate by parts and get

$$
\begin{align*}
\int_{q_{n} / n}^{L q_{n}} & \frac{w_{Q}(x+t)|d g(x+t)|}{t} \\
\leqslant & \frac{1}{L q_{n}} \int_{0}^{L q_{n}} w_{Q}(x+t)|d g(x+t)| \\
& +\frac{n}{q_{n}} \int_{0}^{q_{n} / n} w_{Q}(x+t)|d g(x+t)| \\
& +\int_{q_{n} / n}^{L q_{n}} t^{-2} \int_{0}^{t} w_{Q}(x+u)|d g(x+u)| d t \tag{3.77}
\end{align*}
$$

The first integral on the right hand side of (3.76) is easy to estimate when $x \geqslant 0$. In this case, since w_{Q} is a decreasing function on $(0, \infty)$, $w_{Q}(x+t) \leqslant w_{Q}(x+u)$ for all u with $0 \leqslant u \leqslant t$. Then

$$
\begin{align*}
& \int_{q_{n} / n}^{L q_{n}} w_{Q}(x+t) t^{-2} \int_{0}^{t}|d g(x+u)| d t \\
& \quad \leqslant \int_{q_{n} / n}^{L q_{n}} t^{-2} \int_{0}^{t} w_{Q}(x+u)|d g(x+u)| d t \tag{3.78}
\end{align*}
$$

When $x<0$, the estimate is somewhat more difficult. If $0 \leqslant u \leqslant t \leqslant 2|x|$ then

$$
|Q(x+t)-Q(x+u)| \leqslant c x Q^{\prime}(x) .
$$

So,

$$
\begin{align*}
& \int_{q_{n} / n}^{2|x|} \frac{w_{Q}(x+t)}{t^{2}} \int_{0}^{t}|d g(x+u)| d t \\
& \quad \leqslant c_{1} \exp \left(c_{2} x Q^{\prime}(x)\right) \int_{q_{n} / n}^{2|x|} \frac{1}{t^{2}} \int_{0}^{t} w_{Q}(x+u)|d g(x+u)| d t \tag{3.79}
\end{align*}
$$

If $t \geqslant 2|x|$, but $0 \leqslant u \leqslant|x|$, then

$$
0 \leqslant|x+u|=-x-u \leqslant-x=|x| \leqslant 2|x|+x \leqslant x+t .
$$

So, $w_{Q}(x+t) \leqslant w_{Q}(x+u)$ and we get

$$
\begin{align*}
& \int_{2|x|}^{L q_{n}} \frac{w_{Q}(x+t)}{t^{2}} \int_{0}^{|x|}|d g(x+u)| d t \\
& \quad \leqslant \int_{2|x|}^{L q_{n}} t^{-2} \int_{0}^{|x|} w_{Q}(x+u)|d g(x+u)| d t . \tag{3.80}
\end{align*}
$$

Finally, if $t \geqslant 2|x|$ and $t \geqslant u \geqslant|x|$, then $0 \leqslant x+u \leqslant x+t$ and hence $w_{Q}(x+t) \leqslant w_{Q}(x+u)$. So,

$$
\begin{align*}
& \int_{2|x|}^{L q_{n}} \frac{w_{Q}(x+t)}{t^{2}} \int_{|x|}^{t}|d g(x+u)| d t \\
& \quad \leqslant \int_{2|x|}^{L q_{n}} t^{-2} \int_{|x|}^{t} w_{Q}(x+u)|d g(x+u)| d t . \tag{3.81}
\end{align*}
$$

Adding (3.79), (3.80), and (3.81), we get

$$
\begin{align*}
& \int_{q_{n} / n}^{L q_{n}} \frac{w_{Q}(x+t)}{t^{2}} \int_{0}^{t}|d g(x+u)| d t \\
& \quad \leqslant c \cdot \exp \left(c_{1} x Q^{\prime}(x)\right) \int_{q_{p} / n}^{L q_{n}} t^{-2} \int_{0}^{t} w_{Q}(x+u)|d g(x+u)| d t \tag{3.82}
\end{align*}
$$

when $x<0$. In view of (3.78), we see that (3.82) holds for all $x \in \mathbb{R}$. We now substitute from (3.82) and (3.77) into (3.76) and then use the resulting estimate in (3.75) to get

$$
\begin{align*}
& \left|\int_{q_{n_{n}} / n}^{L q_{n}} \Lambda_{n}(t) d G^{(r)}(t)\right| \\
& \leqslant
\end{align*} \begin{gathered}
c \cdot q_{n}^{-1 / 2}\left(\frac{q_{n}}{n}\right)^{r} \exp \left(c_{1} x Q^{\prime}(x)\right) \\
\\
 \tag{3.83}\\
\cdot\left\{\frac{1}{n} V_{Q}\left(\left[x, x+L q_{n}\right], g\right)+V_{Q}\left(\left[x, x+\frac{q_{n}}{n}\right], g\right)\right. \\
\\
\left.\quad+\frac{q_{n}}{n} \int_{q_{n} / n}^{L q_{n}} \frac{V_{Q}([x, x+t], g)}{t^{2}} d t\right\} .
\end{gathered}
$$

A routine computation now yields that

$$
\begin{align*}
& \left|\int_{q_{n / n}}^{L q_{n}} A_{n}(t) d G^{(r)}(t)\right| \\
& \quad \leqslant c \cdot \exp \left(c_{1} x Q^{\prime}(x)\right) q_{n}^{-1 / 2}\left(\frac{q_{n}}{n}\right)^{r} \cdot \frac{1}{n} \sum_{k=1}^{n} V_{Q}\left(\left[x, x+\frac{q_{n}}{k}\right], g\right) \tag{3.84}
\end{align*}
$$

In view of (3.71), (3.74), (3.75), (3.84), and (3.68),

$$
\begin{align*}
\left|I_{5,1}\right| \leqslant & c \cdot \exp \left(c_{1} x Q^{\prime}(x)\right) q_{n}^{-1 / 2}\left(\frac{q_{n}}{n}\right)^{r} \cdot \frac{1}{n} \sum_{k=1}^{n} V_{Q}\left(\left[x, x+\frac{q_{n}}{k}\right], g\right) \\
& +c q_{n}^{-1 / 2} \int_{x+L q_{n} / 2}^{\infty}|t|^{r} w_{Q}(t)|d g(t)| . \tag{3.85}
\end{align*}
$$

We estimate $I_{5,2}$ in a similar fashion and use this estimate along with (3.85) in (3.66) to get

$$
\begin{align*}
\left|I_{5}\right| \leqslant c(x) & \left\{\left(\frac{q_{n}}{n}\right)^{r} \frac{1}{n} \sum_{k=1}^{n} V_{Q}\left(\left[x, x+\frac{q_{n}}{k}\right], g\right)\right. \\
& \left.+\int_{(L / 4) q_{n}}^{\infty}|t|^{r} w_{Q}(t)|d g(t)|\right\} . \tag{3.86}
\end{align*}
$$

Here we have also used the fact that $x+(L / 2) q_{n} \geqslant\left((L / 2)-A^{*}\right) q_{n} \geqslant$ $(L / 4) q_{n}$. The estimations for I_{2} and I_{4} are done in the same way as for I_{3} and I_{5}, respectively. When we use these estimations along with (3.87), (3.62), and (3.51) in (3.45), we see that

$$
\begin{align*}
\left|s_{n}\left(w_{Q}^{2}, F, x\right)\right| \leqslant & c(x)\left\{\left(\frac{q_{n}}{n}\right)^{r} \frac{1}{n} \sum_{k=1}^{n} V_{Q}\left(\left[x-\frac{q_{n}}{k}, x+\frac{q_{n}}{k}\right], g\right)\right. \\
& \left.+\int_{|t| \geqslant(L / 4) q_{n}}|t|^{r} w_{Q}(t)|d g(t)|\right\} . \tag{3.87}
\end{align*}
$$

In view of (3.41), this completes the proof of Theorem 2.2.

References

1. R. Bojanic, An estimate for the rate of convergence for Fourier series of functions of bounded variation, Publ. Inst. Math. (Beograd) (N.S.) 26, No. 40 (1979), 57-60.
2. R. Bojanic and Z. Divis, An estimate for the rate of convergence of the eigenfunction expansions of functions of bounded variation, Appl. Anal., to appear.
3. R. Bojanic and S. M. Mazhar, An estimate of the rate of convergence of the Nörlund-Voronoi means of the Fourier series of functions of bounded variation, in "Approximation Theory III" (E. W. Cheney, Ed.), pp. 243-248, Academic Press, New York, 1980.
4. R. Bojanic and S. M. Mazhar, An estimate of the rate of convergence of Cesaro means of Fourier series of functions of bounded variation, to appear.
5. R. Bojanic and H. N. Mhaskar, A rate of convergence theorem for expansions in Hermite polynomials, in preparation.
6. R. Bojanic and M. Vuilleumier, On the rate of convergence of Fourier Legendre series of functions of bounded variation, J. Approx. Theory 31 (1981), 67-79.
7. R. Boianic and D. Waterman, On the rate of convergence of Fourier series of functions of generalized bounded variation, Acad. Sci. Arts, Bosnia and Herzegovina, Radovi LXXIV (1983). 5-11.
8. S. Bonan, Applications of G. Freud's Theory, I, in "Approximation Theory IV" (C. K. Chui et al., Eds.), pp. 347-351, Academic Press, New York, 1984.
9. F. Cheng, On the rate of convergence of Bernstein polynomials of functions of bounded variation, J. Approx. Theory 39 (1983), 259-274.
10. F. Cheng, On the rate of convergence of Szasz-Mirakyn operator for functions of bounded variation, J. Approx. Theory 40 (1984), 226-242.
11. Z. Divis, A note on the rate of convergence of Sturm-Liouville expansions, J. Approx. Theory, to appear.
12. Z. Divis, An estimate for Fourier series of functions with derivatives of bounded variation, manuscript.
13. G. Freud, Extension of the Dirichlet-Jordan criterion to a general class of orthogonal polynomial expansions, Acta Math. Hungar., 25 (1974), 109-122.
14. G. Freud, On the theory of onesided weighted \mathfrak{L}^{1} approximation by polynomials, in "Approximation Theory and Functional Analysis" (P. L. Butzer et al., Eds.), pp. 285-303, Birkhäuser, Basel, 1974.
15. G. Freud, On polynomial approximation with respect to general weights, in "Lecture Notes No. 399" (H. G. Garnir et al., Eds.), pp. 149-179, Springer-Verlag, Berlin/ New York, 1974.
16. S. M. Mazhar, An estimate of the rate of convergence of the triangular means of the Fourier series of functions of bounded variation, Collect. Math. 33 (1982), 187-193.
17. H. N. Mhaskar, A quantitative Dirichlet-Jordan type theorem for orthogonal polynomial expansions, SIAM J. Math. Anal. 19 (1988), 484-492.
18. H. N. Mhaskar and E. B. Saff, Where does the sup norm of a weighted polynomial live?, Constr. Approx. 1 (1985), 71-91.
19. H. N. Mhaskar and E. B. Saff, Where does the L^{p}-norm of a weighted polynomial live?, Trans. Amer. Math. Soc. 303 (1987), 109-124.
20. P. Neval, Lagrange interpolation at the zeros of orthogonal polynomials, in "Approximation Theory II", (G. G. Lorentz et al., Eds.), pp. 163-203, Academic Press, New York, 1976.
21. G. Szegö, "Orthogonal Polynomials," Amer. Math. Soc. Coll. Publ., Vol. 23, Providence. RI, 1975.

[^0]: * The author is grateful to the California State University, Los Angeles, for a leave of absence during which this work was done and to the Bowling Green State University, Bowling Green, Ohio, for their support during the leave.

